Polyglot v2 for C++Builder

Polyglot for C++Builder

The internationalization expert
for C++Builder.

Polyglot v2 for C++Builder

Pretty Objects Computers Inc.

5253, Park Ave.

Montreal QC H2V 4P2

CANADA

Internet addresses:

Web site: http://www.prettyobjects.com

Technical support: support@prettyobjects.com

Comments: polyglot@prettyobjects.com

© Copyright 1995, 1997 Pretty Objects Computers Inc.

© 1995, 1997 Pretty Objects Computers Inc.

All rights reserved.

Polyglot v2 for C++Builder

This manual and the expert (software) it describes are sold under license.

The license includes bug fixes and all minor software updates until the next major release.

Polyglot is protected by copyright, registered by Pretty Objects in 1995.

This software may not be distributed, resold, transferred or copied for commercial purposes without written permission from Pretty Objects.

HOWEVER, THE SETUP.EXE FILE MAY BE DISTRIBUTED FREELY FOR DEMONSTRATION PURPOSES ONLY.

This software is provided “as is” to the user.

Pretty Objects gives no warranty of any kind, either express or implied with respect to the expert and associated material including, but not limited to the warranty of merchantability or fitness for a particular purpose, or on the occasion of a security breach.

Pretty Objects cannot be held liable for any claims or damages including property or personal damage, intellectual property damages, any lost profits, lost work time or other incidental or consequential damages arising out of the use of the software or the files it creates.

Table of Contents

3

Welcome

Hardware and Software
5

Technical Support
5

How to contact us
5

What we need from you
6

Install/Deinstall
7

Installation
7

Deinstallation
8

The Polyglot Menu
9

Constant menu items
9

Variable menu items
9

The Language Explorer
10

Manipulating Languages
11

Language properties
11

Adding a language
11

Deleting a language
12

Language name and identifier
12

Manipulating Forms
13

Component properties
13

Changing the translation of properties
14

Finding a component
15

See the form in another language
15

Manipulating the Library
16

The languages
16

The modules
16

Example
17

Projects
17

Internationalization
17

Choosing the international properties
19

Changing languages
19

Changing properties
19

Dynamic language choice
20

Finishing touches
21

Changing other properties
21

International dialog boxes
22

Welcome

W

elcome to the world of software translation made easy, thanks to tools from Pretty Objects.

You have just purchased Polyglot, an internationalization expert that will enable you to create multilingual applications. Whether your applications are database, Client/Server, or other, the globalization of markets means you can now sell your products abroad. But if clients around the globe are going to be interested in your software, they need to be able to use it easily, in a language they are at home with. Why not their own language?

With Polyglot, you can quickly and easily determine what needs to be changed to present your applications in other languages. Your products will look as though they had been developed in the language of the user’s choice!

If you are unable to do the translations yourself, you can use C++Builder to have them done by a third party. You simply export all character strings to a table and reimport them. This way, your developers develop while the translators translate—and everyone benefits!

Polyglot also lets you manage elements that are less immediately visible, like the user’s help file, date formats, numbers, dialog box buttons and common Windows dialog boxes… without having to worry, or even to think about it!

Polyglot ranks high among the foremost translation experts — and what’s more, thanks to the Language Explorer, it’s easy to use!

Hardware and Software

The hardware and software requirements for Polyglot are the same as for C++Builder, with additional disk space of 2 MB needed to contain the expert with its documentation and examples.

Technical Support

How to contact us

Once you have purchased Polyglot, you are entitled to three months of free technical support from Pretty Objects.

You may reach technical support in two ways:

1. Electronic mail.

support@prettyobjects.com

Or use the form at our web site:

http://www.prettyobjects.com/English/support.html

2. Fax.

(514) 279-3891

We will get back to you quickly. Depending on the nature of the problem, we usually respond by the end of the next business day, between 9 a.m. and 5 p.m. EST.

If a more complex problem is involved, we promise to do our utmost to give you an answer as soon as possible.

What we need from you

In order to receive a quick response, we will need the following information from you:

· Name, company name, Email address or fax number.

· Description of your computer system including peripherals, memory, disk space and operating system.

· Product name and version number plus your identification number and associated license key. This information is available in the “About Polyglot” dialog box, except for the key, which we will have supplied you to enable installation.

· The nature of the problem and the steps required to reproduce it.

Install/Deinstall

Installation

When you are ready to install Polyglot, run the Setup.exe program supplied either on diskette or in the .ZIP file where you found this document, and answer the questions:

1. Working Language.

This is the language you want to work in when you install and use Polyglot. It will appear on all menus, and in the Language Explorer and online Help.

2. Your name, company name, and license key. If you don’t have a key, type DEMO.

3. Confirm the information typed in.

4. Choose a directory for installation.

5. Choose the elements you want to install.

The expert, the international form editor and/or the examples.

6. Choose a directory for license file.

7. Choose whether you want to install the icons in the Windows menu.

If you choose to install the icons as recommended, specify a group name under which to install them.

8. Read the file ‘readme.txt’.

It contains license information as well as last-minute details that could not be printed with this manual.

9. Install Polyglot2.obj the way you would any other component.

Deinstallation

To deinstall Polyglot cleanly, do the following:

1. Start C++Builder.

2. Deinstall ‘Polyglot2’ using the components installation box!

3. Quit C++Builder.

4. Use the ‘Deinstall Polyglot’ command on the Windows menu.

The Polyglot Menu
Constant menu items

Polyglot adds the item “Polyglot” to the C++Builder menu. This item accesses a sub-menu containing two items:

1. “Language Explorer… Alt+L”

This item gives you access to the Polyglot Language Explorer through which you can manipulate all the international aspects of your applications.

2. “About Polyglot… ”

This item accesses the “About Polyglot” dialog box, which contains a variety of information including the version number and identification number.

Variable menu items

When you add the IntlMainManager component to the main form, you internationalize your application.

The languages automatically created depend on the library configuration (French and English by default). These languages then appear on the menu, separated from the first items by a line.

A dot will appear in the menu opposite the current language and the language identifier (‘DFM’ for the default language) will appear in C++Builder’s main menu (example: “Polyglot (DFM)”). You will thus be aware of the current language at all times.

When you choose a language item, your project is saved and editing proceeds in the selected language.

The Language Explorer

The Language Explorer looks like the Windows Explorer for Windows 95 and NT 4.0.

The first folder you see, the root of the tree, belongs to the project being edited—or the library, if there is no project open. For a project, the name of the file containing the internationalization defaults is given between parentheses (by default, the same name as the project library but with the ‘.lang’ extension).

The root folder contains two folders:

1. “Languages”

This folder contains all the languages defined for your project (or the library).

It contains a folder for each language defined.

This is where you add or delete languages, change their numeric identifiers and/or names; and visualize and modify their properties.

2. “Forms” or “Modules”

This folder contains all the forms defined in your project or all the modules included in your library.

In the case of a project, it contains folders for all forms in the project, each of which in turn, if it is open, contains folders to represent all components, according to their parentage.

In the case of the library, it contains folders for all modules (units) installed in your library, and each module folder contains folders for all components defined in that module.

Manipulating Languages
Language properties

Select the folder containing the language to be visualized from the Language Explorer (under “Languages”).

If you want to consult the properties of all languages globally, select the “Languages” folder itself.

Once you have selected the correct folder, you will see the properties of the languages in the right-hand portion of the Explorer, each type represented by a specific icon.

To see the values of the properties, go into “Detail” mode, using the ‘View|Details’ menu, from the context-sensitive ‘View|Details’ menu, or by double-clicking on a property.

To modify the value of a property, double-click on the value and you will be able to edit normally until you type [Enter] to confirm or [Escape] to cancel the modification.

Adding a language

To add a language, select the “Languages” folder on the Explorer and use either the ‘File|New|Language…’ menu, or the context-sensitive ‘New Language’ menu.

This automatically adds a new folder to “Languages” and enters editing mode. Type the name of the new language and its (unique) identifier (two upper case letters) between parentheses.

Confirm by pressing [Enter] or cancel with [Escape].

Deleting a language

To delete a language, select it in the Language Explorer, then use the delete command from the menu ‘File|Delete’ or the context-sensitive menu ‘Delete’.
You will be prompted to confirm the deletion.

Notes:

1. The default language, the one identified by ‘DFM’, cannot be deleted.

2. When a language is deleted, its properties are deleted but the files associated with the project forms are not deleted.

Language name and identifier

You may change the name and identifier for all languages, except the identifier for the default language, which must remain ‘DFM’.

Use the ‘File|Rename’ menu, the context-sensitive ‘Rename’ menu, the keyboard shortcut [F2] or select the folder for the target language and click once.

You will then be able to edit the language name and identifier directly.

In C++Builder, everything you type in the Object Inspector is saved in a .DFM file associated with your .PAS source file.

Polyglot manages several of these files for a single .PAS source file. File extensions for languages other than the default language are the language identifiers. If you change a language identifier all the files for that language will have to be renamed. This can be a time-consuming task, depending on the number of forms in your project.

Manipulating Forms

Component properties

Open the “Forms” folder in the Language Explorer and you will see a sub-folder for each form in your project.

Each of these sub-folders displays the name of the form and the name of the unit between parentheses.

Each of these sub-folders contains other folders, one for each component in the form according to their parentage; and one for each “persistent” (object incorporated in another object through a property, the font for example, visible as a + symbol to the left of its name in the Object Inspector) and so on.

Once you have selected a folder, the properties associated with it will appear in the right-hand portion of the Explorer, each type of property represented by a specific icon.

To see the values of the properties, go into “Detail” mode from the ‘View|Details’ menu, from the context-sensitive ‘View|Details’ menu, or by double-clicking on a property.

The first column displays the names of the properties (as in the Object Inspector).

The second column, “Translation” shows what kind of translation is applied to the properties:

1. “Default”

This property is only available for the default language (it is always available for the default language).

2. “Partial”

This property is available for some but not all languages.

3. “All”

This property is available for all languages.

The third column displays translation information for the default language. It invariably shows “Always” because all the properties are always accessible in the default language.

The other columns display the other languages used for the project. Their values may be:

1. “Yes”

The property is available for the language in question in the Object Inspector. Its value may be different from the value of the default language.

2. “No”

The property is not available for this language, so the value for the default language will be used.

3. “Never”

This property is not kept among the .DFM files so Polyglot cannot manipulate it. Its icon is displayed crossed out.

Changing the translation of properties

To change the availability of a property or event for a given language, double-click on the ‘Yes’ or ‘No’ at the intersection of the language and the property for the selected component.

When you want to internationalize an existing project, you can force the translation information given in the project library to be retrieved by using the context-sensitive menu.

There are three possibilities:

1. ‘Load…’

Retrieve translation information from the library only for the component selected.

2. ‘Load with Persistents…’

Retrieve translation information for the selected component and its persistents (fonts…)

3. ‘Load with Persistents and Children…’

Retrieve translation information for the component selected and its persistents plus all the components it contains with their persistents.

When you modify the translation information for a component, you can store this information in the library where it will be available as default the next time you use a similar component, or when you load the information in the library (using the context-sensitive menu ‘Save…’ and ‘Save with Persistents…’).

All translation information is stored in a file with the same name as the unit, but with an extension consisting of an underscore followed by the language identifier.

Finding a component

When a form component is selected, you can easily retrieve its folder in the Explorer using the keyboard shortcut [AltGr]+L (or [Ctrl]+[Alt]+L).

Similarly, when you are manipulating a component in the Explorer, you can find it on its form using the same keyboard shortcut.

See the form in another language

When you are editing a language, you can visualize the final look of your window in this language using the context-sensitive menu for the form in question: ‘Show Form Image’.

If you then change languages, the image remains in the language for which you invoked the command. In this way you can translate a form while seeing it in another language.

Note: the image window can remain “Stay on Top” or not, as indicated in its context-sensitive menu.

Manipulating
the Library

When you close everything in C++Builder, the Explorer allows you to manipulate not a project, as all projects are closed, but the library itself.

The languages

Languages are manipulated exactly as for a project, except that the information is stored in a .lang file rather than in the project.

The modules

When the library is being edited, the modules (units) saved in the library are visualized as folders, children of the “Modules” folder that replaces the “Forms” folder for a project.

These module folders contain folders for each of the components defined in that module.

You may edit them and their persistents in the same way you edit a project.

Modifying a project will have the effect of modifying the default translation information when a component is placed on a form, or when this information is read from a library using the commands ‘Load…’, ‘Load with Persistents…’ and ‘Load with Persistents and Children…’ from the context-sensitive menu.

Example

Projects

We will now look at how to build an international application step by step.

To do this, we will build a text editor based on the SDI application, which can be automatically generated.

Choose an empty directory and generate the SDI application using C++Builder.

Once the project has been generated, proceed with the following steps:

1. Change the name of the main form to “Editor”.

2. Place a Memo on the form, align it (Align) as a client (alClient) and empty it (Lines).

3. Respond to the ‘File|Open…’ command as follows:

if(OpenDialog->Execute)

Memo1->Lines->LoadFromFile
(OpenDialog-> FileName);
4. Respond to the ‘File|Save…’ command as follows:

if(SaveDialog->Execute)

Memo->.Lines->SaveToFile(SaveDialog->FileName);

Our base application is now ready.

Internationalization

We shall now proceed to internationalize the application. To do this, we only need place an IntlMainManager component on the main form.

As you can see, the Polyglot item on the menu looks like this: ‘Polyglot (DFM)’. Its sub-menu contains two languages, French and English.

Choosing the international properties

The next step is to choose the international properties (and events) using the Language Explorer.

The Explorer contains two folders: one for the main form and one for the “About Polyglot” dialog box.

The easiest way to proceed is to handle all items in the library by means of a single operation per form: the item ‘Load with Persistents and Children…’ from the context-sensitive menu for each form.

Note: To know the contents of a form, the Explorer must open the form, if it isn’t already open.

Changing languages

The first step in entering property values in the other language is to change languages.

You can do this from the menu by choosing the menu item for the other language, by using the context-sensitive menu in IntlMainManager or by double-clicking on it.

The menu now shows the French identifier ‘(FR)’ rather than the default language ‘(DFM)’.

The only properties now displayed by the Object Inspector are the international ones we have chosen.

Changing properties

Everything you now enter in the Object Inspector is saved in an .FR and not a .DFM file.

Modify the properties of interest to you, as you would normally in C++Builder. For example, change the name of the main form, the menu and the buttons.

You can do the same for the ‘About’ dialog box.

Dynamic language choice

So far, you can change from one language to another during design, but not yet during execution.

To do this we will place a combobox that displays all the available languages, allowing us to choose among them.

This component already exists: IntlLanguagesComboBox, from the ‘Pretty Objects’ page.

Take it and drop it in the tool bar, align it correctly ([Ctrl]+[(] if you are using the grid).

During design, this component always displays the language currently being edited.

When we choose a language in this combobox, we want all forms to be translated into that language.

We therefore respond to its OnClick event:

IntlLanguages->LanguageId =

IntlLanguagesComboBox1->LanguageId;
For a detailed description of these components, consult the online Help.

Be sure that you are in the default language (DFM) before compiling your application, then try it: you have a bilingual application!

If you only wanted to change the main form, you could have replaced IntlLanguages with IntlMainManager1!

If on the other hand you only wanted to change the ‘About’ dialog box, you would need to add an IntlTranslatManager to it and change its property LanguageId :

AboutBox->IntlTranslatManager1->LanguageId = IntlLanguagesComboBox1->LanguageId;

Finishing touches

A few small problems remain:

1. The standard dialog boxes always appear in the same language.

2. The keyboard shortcut for ‘Exit’ doesn’t change according to the current language.

Changing other properties

Let us start with the second problem:

1. Edit the current main menu, selecting the menu item ‘Exit’.

2. Call the Language Explorer using its shortcut key [AltGr]+L (or [Ctrl]+[Alt]+L) . You have now selected the corresponding menu item in the Explorer.

3. Go into detail mode (double‑click on the right-hand side).

4. Double‑click on the second column of the ShortCut property. It now displays ‘All’. The shortcut key can now be different for each of the languages.

5. Change languages and assign a new value.

We now have ‘Alt+X’ for the ‘Exit’ command and ‘Alt+Q’ for the command ‘Quitter’ !

Don’t forget to return to the default language before compiling!

International dialog boxes

To solve the first problem, we are going to use boxes other than the standard ones (sub-classes of standard components):

1. Place an identical component, but an international one: IntlOpenDialog (from the ‘Pretty Objects’ page).

2. Give this component the same property values as in the existing dialog box.

3. Remove the original component and give the new component the old name (so as not to have to change the code).

4. Assign values to the labels appearing in the box using the Captions32 property. To do this, look for the .POI file for the target language located in the Polyglot directory. You will thus complete all sub-properties. At the same time, choose an appropriate title for the box.

5. Change languages and continue as in the preceding step but for the French language. Don’t forget to translate the filter as well!

Your application now displays an “open file” dialog box in the main language selected (by IntlLanguages).

Follow the same procedure for the “save file” dialog box.

Don’t forget to return to the default language before compiling!

That’s all!

7

_923055395.bin

_923055394.doc
BorlandConnections

	SI/VAR Member

