
Date 20.09.1999 Version 1.02 This document is available at www.falcom.de

FALCOM A2-3

PROGRAMMING MANUAL

2

FALCOM A2-3
PROGRAMMING MANUAL

1. General Description ... 3
Summary schematics A2-3 ... 3
Detailed startup information ... 4
Downloading EXE files .. 5
Upgrading previous monitor versions ... 5
MON186 commands .. 6

2. Programming guide ... 11
Serial support functions .. 11
Environment support functions ... 13
Time and Date support functions .. 14
File and AUX port functions... 15

3. MON186 system services ... 16
Serial support functions .. 16
Environment support functions ... 17
Time and Date support functions .. 18
Memory management functions.. 19
Process management functions ... 20
Console character input and output functions .. 20
File functions.. 22
Auxiliary io functions... 22
Miscellaneous functions ... 23

4. HARDWARE SUPPORT .. 24
A1-3 hardware settings ... 24
A2-3 hardware settings ... 24

5. Debug interface .. 27

6. Technical data .. 29

7. General hints .. 31

3

1. General Description

MON186 is the operating system for FALCOM A2-3 with the Am186ES controller.

MON186 is a basic monitor. It supports download of executable images to ROM or RAM, and
rudimentary debugging. For developers just getting started, however, MON186 running on an
FALCOM A2-3 modem provides a powerful tool to allow quick prototyping and benchmarking of
simple algorithms, before a major investment is made in x86 development tools. Its minimal DOS
emulator allows the developer to download and run small .EXE files which were developed and tested
using standard compilers on a PC running DOS.

NOTE! THIS DESCRIPTION APPLIES TO BOARDS OPERATING AT FACTORY
 DEFAULT SETTINGS. SEE "DETAILED STARTUP INFORMATION"
 BELOW IF THIS PROCEDURE DOES NOT WORK FOR YOU.

Summary schematics A2-3

For a quick overview please have a look on the scematic of the A2-3. Detailed information You will
find in the chapter 6 „Technical Data“.

INTERFACE B COM1
INTERFACE C COM2
INTERNAL COM3,4

4

Detailed startup information

Set up your PC's terminal program for 9600 Baud, at 8 bits per character, no parity and one stop bit.
Set the terminal program's flow control to hardware flowcontrol. Connect the supplied serial cable
from the PC to the FALCOM A2-3.

When the FALCOM A2-3 is reset, the 2 LEDs will go on. This first pattern will last for four seconds
at which time MON186 will start a default modem application or display its sign on
screen to the terminal and updating the LED display. At this point, you can press '?' followed by
<ENTER> for MON186's help screen. When power is supplied, the initial LED pattern indicates that
MON186 is waiting for an ‘@‘ character to be received from the terminal. If it receives an ‘@‘, it will
automatically adjust to the baud rate of the ‘@‘, and display the MON186 welcome message and
prompt. If it receives any character other than an ‘@‘ it will restart the terminal check and let the user
try again to press an ‘@‘.

If the user does not press an ‘@‘ during the initial LED pattern (nominally four seconds), MON186's
next action depends on whether the user has installed a startup program in the ROM or not. If the user
has used the ‘W‘ command to store a DOS EXE program in the flash and the set "autorun" variable to
mark it for running at startup time, then that DOS program will be executed. Otherwise, MON186 will
display the welcome message and prompt, but must assume the baud rate. If the baud rate does
not match that one of the terminal, the user will see nothing or garbled characters. (See the
„Downloading EXE files" sections for information about installing user programs.)

At the factory, the baud rate is set to 9600 and the setting is 8N1. You can change this default by
setting the COM "baudrate" variable on a common value.

The automatic baud rate detection is very useful in the following circumstances:

 -- If a user program is installed, but the user wishes to invoke the monitor instead.
 -- If the programmed baud rate does not match the terminal baud rate.
 -- If the programmed CPU speed does not match the actual CPU speed.

(The bit clock is divided down from the CPU clock.)
 -- If the user doesn't want to wait 4 seconds for the monitor to boot.

The automatic baud rate detection is designed to detect baud rates from 1200 to 115200, but how well
it works depends on the CPU type and speed. The algorithm may also fail at higher baud rates if you
run the CPU at slower frequencies than the default 18.432 MHz.

MON186 supports downloading of Intel extended hex files into RAM or ROM. The hex file should
contain type 2 extended address records, which specify the load address in the 1MB address range and
the last record in the file should be a type 1 EOF record.

A file which is being downloaded to RAM for execution should be located between 410h and the start
of the monitor data at the end of the RAM, and a file which is being downloaded to ROM for
execution should be located between the start of the ROM and F0000h. The monitor ‘I‘ command will
show the size and location of the free RAM, and information about the size and location of the flash
ROM.

It is impermissible for the file to have some sections download to RAM and others download to ROM,
because MON186 relocates itself to some RAM locations while running. MON186 will report a range
error on the download of such a file.

If you are downloading into ROM, you should first make sure the target download area is empty by
using the ‘X‘ command to erase the flash sectors. Unless you are storing multiple programs into flash,
the easiest way to do this is to use ‘XZ‘ to erase all the application sectors.

5

There is no specific command to download hex files. Simply start transferring with your terminal
program in “ASCII“ or "raw ASCII" mode. MON186 will echo the first record as it receives it, but
when it parses it and determines that it is a hex file record, it will switch into a file transfer mode. The
type 1 EOF record at the end of the file will switch back to command mode.

If an error is encountered during the download, an error message will be printed, and MON186 will
stay in download mode until it receives an Escape character (1Bh), at which time it will print a more
detailed error message and then return to command mode.

Downloading EXE files

MON186 can download and run DOS executable files, enabling customers to use affordable, readily
available, and familiar PC-based compilers and assemblers to develop initial test and benchmarking
code. MON186 provides a minimal subset of DOS int 21h functionality, which is fully described
in the section, "MON186 system services" capter 3. Most compilers are capable of generating EXE
files which work within this environment, as long as the user does not use library functions which
require file-based I/O.

Unlike some prior versions, MON186 V3.36 does not support direct downloading of EXE files.
Instead, it supports AMD LPD extensions to the Intel hex file format, and a supplied conversion
program will convert EXE files into this extended hex file format. There are several reasons for this
change:

 (1) Unlike hex files, exe files do not have error checking
 (2) Some terminal programs, e.g. HyperTerm which comes with
 Windows 95, will not transmit binary data unchanged.
 (3) The added overhead of transferring a hex file is mitigated
 by the fact that MON186 allows baud rates up to 115200.
 (4) The relocatable hex file can be stored to Flash

 (using the ‘W‘ command) and later moved to RAM and executed (using the ‘L‘ command).

To convert your EXE file into a HEX file, use the MAKEHEX utility supplied on this archive in the
TOOL subdirectory. For example, to convert FOOBAR.EXE into FOOBAR.HEX, simply type
MAKEHEX FOOBAR (assuming MAKEHEX.EXE is in your path).

Once you have converted your EXE file, simply download it to MON186 as described in the previous
section. Once it is downloaded, you can set parameters for the program (if it expects a command line)
with the ‘N‘ command, and then start execution with the ‘G‘ command.

Alternatively, use the ‘W‘ command before you start downloading the file, to program it into flash.
Since flash is non-volatile, the program can then be run multiple times, even after power has been
cycled.

Upgrading previous monitor versions

(1) Use the 'XZ' command to erase all application flash sectors.

(2) Download A2MON3xx.HEX, the upgrade file, to the board. It is not necessary
to type any command to do this, the new MON186 automatically recognizes
a file download when it sees the colon which starts the file.

(3) Use the 'G' command to go to the new monitor, which is running out of

6

user flash ROM space. This will automatically go to the correct address.

(4) Press '@' to establish communication with the new monitor. You are now
running out of the application ROM based copy of the monitor.

(5) Type 'Z' <enter> to initiate the upgrade. You will be asked if this
is really what you want to do. Answer 'Y' to perform the upgrade, but
do not do this if your power is not stable, or if little children are
near the On/Off button. If the upgrade is aborted before it finishes,
you may need to send your board back to factory to have the flash
reprogrammed.

(6) Your monitor is now upgraded, but you are still running out of the
application ROM copy of the monitor. To run out of the new boot copy
of the monitor, either switch on/off power, or type “G FFFF0“ to go to
the reset vector, then press '@‘ within 4 seconds to establish
communication with the boot copy of the monitor.

(7) You can now use the 'XZ' command to remove the application copy of
the monitor, and then download any desired hex file to application ROM.

MON186 commands

The first step in understanding how to use MON186 commands is to understand
the command parameters. Different commands take different parameters, but
these parameters are very commonly used:

BYTE -- 1 or 2 hexadecimal digits

WORD -- 1-4 hexadecimal digits

DECIMAL -- 1-9 decimal digits

ADDRESS -- An address may be entered in typical x86 segment:offset format,
e.g. F800:0 to refer to the base of the monitor, or a LINEAR
address may be entered as 5 hex digits, e.g. F8000. If the linear address approach is used,
MON186 treats the first 4 digits as the segment, and the last digit as the offset. Most
commands which do not alter memory also support SHORT addresses. A short address is
where only the offset is specified (between 1 and 4 hex digits). The current value of the
DS register is implicitly used for the segment.

Commands which alter memory require a full address.

RANGE -- An address range may be specified in two different ways,
either as <address> <space> <address>, where the address of the start of the range and
the address immediately after the end of the range are specified, or as <address> L
<length>, where the address of the start of the range and the length of the range are
explicitly specified. The following commands are identical, and dump 1024 bytes starting
at 16K:

D 400:0 400:400
D 0:4000 400:400
D 04000 L 400
d04000l400

7

As the last command shows, spaces only matter where the parser would have
trouble distinguishing the end of one number from the start of the next one,
and all commands may be entered in upper or lower case.

LIST -- A list is a collection of bytes. Each byte may be
specified with one or two hex digits, with the bytes separated by spaces, and ASCII data
may be specified in single or double quotes. The following command will place an ASCII
string, complete with carriage return and two line feeds, at 16K:

04000 "This is a quoted string" 0D A,0A

Note that (other than the mandatory 5 digits for a linear address) numbers
do not require leading zeros. Also note that commas are optional.
They may be used instead of or in conjunction with spaces.

Angle brackets <> indicate required parameters.
Square brackets [] indicate optional parameters.
Vertical bar | indicates the user should choose one of the parameters

<Break> When MON186 receives an RS232 break (usually invoked by pressing
Alt-B or Ctrl-Break on the terminal emulator) it will break into the debugger. This is
useful in some cases when your application appears 'hung' -- you can find out where it is
executing. Note, however, that <Break> can also be used to debug MON186 itself, and
you should be careful how many times you press it without pressing "G" to continue
program execution. Too many breaks will cause a stack overflow within MON186 itself.

B <address> Sets a breakpoint by saving the value at a location, and
then inserting an int 3 instruction (CCh) at that location. Only one breakpoint is active at
a time -- setting one removes previous breakpoints. Breakpoints may only be set
in RAM, not in ROM. When the int 3 at the breakpoint is executed, the code at the
breakpoint is automatically restored. At this point, you may set another breakpoint if you
desire, and use the G or T commands to continue execution.

C <range> <address> Compares two memory ranges. Each differing byte will be
displayed on a single line as:
 <address in range> <byte in range> <comparison byte> <comparison address>

D[WA] [range]
Dumps a memory range, in hexadecimal bytes/words and/or ASCII. If the range is not
specified, it will dump 128 bytes starting where the most recent dump command finished.

E <address> [list]
Enter memory. If the list (at least one byte) is specified, the entire list will be stored in
memory at <address>. If no list is specified, the command will prompt for entry of a list
of bytes at incrementing addresses. When all data has been entered, respond to the prompt
with a single dot ‘.‘ on a line, or with the escape key.

F <range> <list>
Fills a memory range with a list of bytes. The entire range is filled, and the list is
replicated as many times as it takes to fill it. The size of the list does not need to
fit evenly in the range: the last copy of the list is truncated to fit.

G [=[address]]

8

"Go", e.g. start execution. If an address is given, it will be stored in CS:IP before
execution starts. The equal sign is permitted for compatibility with DOS DEBUG.

I[W[word]] The "Input" command by itself will show information about the
system. ‘I‘ followed by a word will input from a byte-wide port and display the results,
and ‘IW‘ followed by a word will input from a word-wide port and display the results.

J The J command causes the automatic baud rate detection to be invoked.
Once you have entered this command, you may change the terminal's baud rate. On an
Am186ES processor, you may even connect to the alternate serial port. Once you are set
up properly, simply press "a" to reestablish connection with the monitor. Note that
automatic baud rate detection may not be reliable at baudrates which are high relativeto
the CPU frequency and bus width. At a CPU frequency of 18.432MHz, the Am186ES
parts can reliably detect 115200 kBaud.

L[G] [decimal]
The “Load“ command loads a previously stored EXE file from flash to RAM. If no
parameters are given, a list of currently stored programs is displayed. If a decimal number
is given, the corresponding program is copied from flash to RAM. Programs are loaded to
flash using the W command, and may be made bootable with the "AutoRun" setting. The
‘LG‘ command is equivalent to the ‘L‘ command immediately followed by a ‘G‘
command, e.g. load and run the program.

M <range> <address>
Moves a block of memory from one address to another. Overlapping blocks are handled
correctly. The following command sequence shows how the monitor can be executed out
of RAM:

M F8000 L 7000 00400 -- moves monitor to base of RAM
G 00400 -- starts execution
I -- shows new monitor CS and free memory

N <arguments>
In DOS DEBUG, this command names the COM or EXE file to load or save, and also
gives command line arguments. MON186 has no knowledge of the file name, so only
requires command line arguments (if needed by the program). We recommend you design
your test program so that it does not rely on command line arguments, as it is easy to
forget to use the ‘N‘ command.

O[W] <word> <byte>|<word>
Outputs the second parameter (byte or word) to the port given in the first parameter. Use
‘OW‘ for word-wide outputs, ‘O‘ for byte-wide outputs.

P[ABC] [VariableName DecimalValue|String Value]
Sets or shows Permanent Environment Parameters. The monitor stores these values in a
32 kBit serial eeprom. Use ‘PC‘ to clear all environment parameter at once. Use
‘P VariableName‘ to clear a specific setting. For its own configuration MON186 uses the
following variables:

BOOT = cpuspeed,autorun,feature

cpuspeed -- This defines the speed of the CPU to the
 monitor. This is required for correct default baud
 rate set up and to correct internal timer tick
 correctly, which is used by benchmark programs
 and also governs the speed of the LED patterns.

9

autorun -- When this is non-zero, it selects which EXE
 program to load from the flash and run at boot time.
 A value beetween 8000 - F000 starts directly a program
 downloaded to this address in the flash.A value
 greater than 0 starts a EXE program loaded to the
 flash with the ‘W‘ command.

feature -- This defines a special string with following meaning.
When the character ‘L‘ is defined, the monitor will use the LEDs to show
current status. When this is not set, the monitor will not change the LEDs.
When the character ‘B‘ is defined, the monitor enter itself after receiving a
break on the serial port.

COM1 = baudrate[,mode,muxvalue,handshake][,buffer size]
COM2 = baudrate[,mode,muxvalue,handshake][,buffer size]

baudrate -- Sets the default baudrate for the serial port
 (1200 - 115200). The detection of the baudrate at startup overwrites this
 setting und the monitor uses the detected value instead.

mode -- Sets the default line setting for the serial port
 (7E1,7O1,8N1,8E1,8O1).

muxvalue – Dummy setting on the A2-3. On the device A1-3 sets the default value for the
 multiplexer of the serial port. The important settings are 0 (means
 interface DB9) and 3 (means interface RJ45).
 Please note that the 2 com port must have a different
 muxvalue to prevent a loss of communication to the MON186.

handshake - Sets the used flow control of serial operation.
 That means with ‘X‘ the monitor uses XonXoff software
 flow control and with ‘H‘ the monitor uses RtsCts hardware handshake.

buffer size - Sets the size of the buffer for the serial port.
 The default value is 256 Byte and can be set from 256 .. 8192 Byte.

R [RegisterName | ("F" FlagName)]
The "Register" command with no parameters will display the current state of all registers
and flags. ‘R‘ can also be used to set the value of any register or flag bit:

To examine a register: R AX
 This will print the current value of the AX register and
 prompt you for a new value.

To change a register without examining it: R AX 5000
 This will change the value of AX to 5000h.

To examine the flags: R F
 This will print the current flag values, and prompt you
 for a two letter code to change them. Flag names are the
 same as DOS debug uses. Don't worry if you get the flag
 name wrong, MON186 will show you the names it expects.

To change a flag without examining it: R F DN

10

 This will set the direction flag, so the direction is
 now "down".

NOTE: As discussed previously, in most situations, spaces are optional. These commands
could be entered as RAX, RAX5000, RF, and RFDN, respectively.

S <range> <list>
„Search“ a given range for a list of bytes. The starting address of each occurrence of the
list within the range is displayed. There will be no display if the list is not found within
the range.

T [=address] [word]
This command uses the x86 trap flag to trace execution. Unlike breakpoints, traces may
be performed in ROM as well as RAM. An optional starting address may be used to set
CS:IP before the trace starts, and an optional number of steps to trace may be entered as
well. The default is 1 step.

W [file name]
The “Write“ command initiates a download of a relocatable hex file (generated by
running the host program MAKEHEX on a DOS executable) to the flash. The file name
is given so that the program can be identified later if multiple programs are stored in the
flash. Programs are stored starting at the lowest address of the flash. Use the ‘L‘
command later to move a program into RAM for execution, or use the "AutoRun" setting
to cause the monitor to load and run a program at boot time.

X <sector number> | Z "eXterminate"
This command will erase one of the sectors in the application area of the flash ROM, or,
if ‘XZ‘ is given, will erase all of them. The ‘I‘ command can be used to retrieve
information about the sectoring of the flash part. Use 0 to refer to the first sector, 1 to the
next one, etc.

U [hh.mm.ss][dd.mm.yyyy]
The “U“ command sets the current system time and date to the real time clock or shows
the current value.

Z The “Z“ command upgrades the boot monitor. It may be issued under
two circumstances, either from a monitor which is running at the upgrade location
(normally F0000h, but depends on flash type), to upgrade the boot monitor in the same
flash part, or from a monitor which is running at the boot monitor location (F8000h) to
replace a dead monitor in a different flash part (on boards which support a CS switch
from one flash to another).

11

2. Programming guide

We choose Visual C++ V1.52 as programming environment for the FALCOM A2-3. That package
includes all neccessary tools to build application for the FALCOM A2-3. The standard „C“ functions
are contained in the standard librarys of Visual C++. The different programming environment for the
hardware related parts on the FALCOM A2-3 included in a additional library. That library
„LIBA1.LIB“ contains hardware related serial, date, time and environ functions and the syntax of
those additional functions listed below. For an overview of the Visaul C++ standard function please
look in the online helps or try to refer to it in a programming training course.

Serial support functions

The functions ComPutch(), ComGetch(), ComRead(), ComWrite(), ComString() can be used to
communicate with those serial devices. The functions ComGetConfig(), ComSetConfig(), ComLine()
should be used for reading the current state of the com port or changing the com port configuration.

Parameter definitions:

#define PORT_COM1 0
#define PORT_COM2 1
#define PORT_COM3 2
#define PORT_COM4 3

#define LINE_STS_MASK 0xFF00
#define LINE_ERROR 0x8000
#define LINE_RECV_BREAK 0x2000
#define LINE_TRNS_BLOCKED 0x1000
#define LINE_RECV_FRAME 0x0800
#define LINE_RECV_PARITY 0x0400
#define LINE_RECV_OVER 0x0200
#define LINE_RECV_READY 0x0100

#define LINE_SET 0x8000
#define LINE_CLEAR 0x0000
#define LINE_MASK 0x00FF
#define LINE_FLUSH 0x4000
#define LINE_BREAK 0x2000
#define LINE_UPDATE 0x1000
#define LINE_RESET 0x0800
#define LINE_DCD 0x0080
#define LINE_DSR 0x0020
#define LINE_CTS 0x0010
#define LINE_DTR 0x0008
#define LINE_RTS 0x0004
#define LINE_RI 0x0002
#define LINE_DEVICE 0x0001

#define MODE_BIT_MASK 0x0003
#define MODE_BIT_5 0x0000
#define MODE_BIT_6 0x0001
#define MODE_BIT_7 0x0002
#define MODE_BIT_8 0x0003

12

#define MODE_STOP_MASK 0x0004
#define MODE_STOP_1 0x0000
#define MODE_STOP_2 0x0004

#define MODE_PAR_MASK 0x0018
#define MODE_PAR_NONE 0x0000
#define MODE_PAR_ODD 0x0008
#define MODE_PAR_EVEN 0x0018

#define MODE_BAUD_MASK 0x00E0
#define MODE_BAUD_1200 0x0000
#define MODE_BAUD_2400 0x0020
#define MODE_BAUD_4800 0x0040
#define MODE_BAUD_9600 0x0060
#define MODE_BAUD_19200 0x0080
#define MODE_BAUD_38400 0x00A0
#define MODE_BAUD_57600 0x00C0
#define MODE_BAUD_115200 0x00E0

#define MODE_FLOW_MASK 0x0300
#define MODE_FLOW_H 0x0100
#define MODE_FLOW_X 0x0200

#define MODE_MUX_MASK 0x0C00
#define MODE_MUX_DB9 0x0000
#define MODE_MUX_GPS 0x0400
#define MODE_MUX_GSM 0x0800
#define MODE_MUX_WS 0x0C00

Get Parameter of com port:

WORD ComGetConfig(BYTE com,lpWORD config,lpWORD time);

Parameter BYTE com ComPort
lpWORD config ComConfig
lpWORD time Timeout

Result WORD line LineState

Set Parameter of com port:

WORD ComSetConfig(BYTE com,WORD config,WORD time);

Parameter BYTE com ComPort
lpWORD config ComConfig
lpWORD timeout Timeout

Result WORD line LineState

Get a character from com port:

WORD ComGetch(BYTE com);

Parameter BYTE com ComPort
Result WORD line LineState (HighByte) and InputData (LowByte)

13

Put a character to com port:

WORD ComPutch(BYTE com,BYTE xch);

Parameter BYTE com ComPort
BYTE xch OutputData

Result WORD line LineState

Read data from com port:

WORD ComRead(BYTE com,lpBYTE p,WORD num);

Parameter BYTE com ComPort
lpBYTE p Buffer
WORD num Count

Result WORD line LineState

Write data to com port:

WORD ComWrite(BYTE com,lpBYTE p,WORD num);

Parameter BYTE com ComPort
lpBYTE p Buffer
WORD num Count

Result WORD line LineState

Put a string to com port:

WORD ComString(BYTE com,lpBYTE p);

Parameter BYTE com ComPort
lpBYTE p Buffer

Result WORD line LineState

Set the state of the com port:

WORD ComLine(BYTE com,WORD set);

Parameter BYTE com ComPort
WORD config ComConfig
WORD set LineState

Result WORD line LineState

Environment support functions

The functions SetEnviron(),GetEnviron() and EnvironString() can be used to communicate with a
serial eeprom device. To handle different data types these functions use a type Parameter EnvType
wich can be ENV_CLEAR (delete a entry), ENV_VALUE (integer data), ENV_STRING (string
arrays) and ENV_DATA (binary arrays).

Parameter definitions:

enum {
 ENV_CLEAR,ENV_STRING,ENV_DATA,ENV_VALUE
} EnvType;

14

Write a environ entry:

INT SetEnviron(WORD typ,lpBYTE entry,lpBYTE env,WORD len);

Parameter WORD typ EnvType
 lpBYTE entry EnvName
 lpBYTE env EnvData
 WORD len Number of data to write
Result INT error Operation succeed

Read a environ entry:

INT GetEnviron(WORD typ,lpBYTE entry,lpBYTE env,WORD len);

Parameter WORD typ EnvType
 lpBYTE entry EnvName
 lpBYTE env EnvData
 WORD len Maximum number of data to read
Result INT error Operation succeed

Read or write a string environ entry:

INT EnvironString(BOOL write,lpBYTE entry,lpBYTE env,WORD len);

Parameter BOOL write TRUE to write, FALSE to read
 lpBYTE entry EnvName
 lpBYTE env EnvData
 WORD len Maximum number of data to read
Result INT error Operation succeed

Time and Date support functions

The functions GetTime(), SetTime() can be used to communicate with the real time clock.

Parameter definitions:

typedef struct Time {
 BYTE Hundredths;
 BYTE Seconds;
 BYTE Minutes;
 BYTE Hour;
 BYTE Day;
 BYTE Month;
 WORD Year;
 BYTE DayOfWeek;
 DWORD TotalTime;
} RtcTime,__far *lpRtcTime;

Get current system time:

DWORD GetTime(lpRtcTime t);

Parameter lpRtcTime t SystemTime
Result DWORD ticks ticks of the day, value in hundredth seconds.

15

Set current system time:

void SetTime(lpRtcTime t);

Parameter lpRtcTime t SystemTime
Result nothing

File and AUX port functions

#define HANDLE_STDIN 0x00 /* file handles */
#define HANDLE_STDOUT 0x01
#define HANDLE_STDERR 0x02
#define HANDLE_AUX 0x03

#define AUX_IGNITION 0x0080 /* input values */
#define AUX_POWER 0x0040
#define AUX_RESET 0x0020
#define AUX_SIMCHNG 0x0010
#define AUX_LINE4 0x0008 /* in & output values */
#define AUX_LINE3 0x0004
#define AUX_LINE2 0x0002
#define AUX_LINE1 0x0001

Read and write to the AUX port:

void SetAux(WORD io);
WORD GetAux(void);

File support functions:

void DosWrite(WORD hnd,lpBYTE data,WORD len);
void DosRead(WORD hnd,lpBYTE data,WORD len);

There are some differences beeween the AUX and the file functions for the HANDLE_AUX value.
A file operation handles read or write patterns to a display on the LEDs of the device (LED line of the
A1-3 or the 2 LED’s on the A2-3). A SetAux() or GetAux() function reads or writes to an additional io
port. (ignition line, power fail comparator, reset and simcard switch and general io lines).

16

3. MON186 system services

Serial support functions

The A2-3 handles serial ports COM1-COM4 for the connection with different serial io devices. The
serial lines connected are shown in the following diagram:

COM1 Serial Interface on the DB15
COM2 Serial Interface on the RJ45
COM3 Serial Interface gsm modem
COM4 Serial Interface internal gps receiver or debug port

The functions ComPutch(), ComGetch(), ComRead(), ComWrite(), ComString()can be used to
communicate with that serial devices. The functions ComGetConfig(), ComSetConfig(), ComLine()
should be used for reading the current state of the com port or changing the com port configuration.
The MON186 support the COM service 00h - Init com port, 01h - Get com port state, 02h - Get
character from com port, 03h – Put character to com port, 04h - Get string from com port, 05h - Put
string to com port and 06h – Init com port with a string configuration.

INT22 service 00h: Init com port

Parameter AH = 00h COM service 00h
 AL = ComPort handle of com port

CX = ComConfig new configuration setting
DX = Timeout new timeout setting

Result AX = LineState current state of com port

INT22 service 01h: Get com port state

Parameter AH = 01h COM service 01h
 AL = ComPort handle of com port

CX = LineState set line state of com port

Result AX = LineState current state of com port
CX = ComConfig configuration setting
DX = Timeout timeout setting

INT22 service 02h: Get character from com port

Parameter AH = 02h COM service 02h
 AL = ComPort number of com port

Result AX = LineState current state of com port
CL = InputData char read from com port

INT22 service 03h: Put character to com port

Parameter AH = 03h COM service 03h
 AL = ComPort handle of com port

CL = OutputData character writes to com port

Result AX = LineState current state of com port

17

INT22 service 04h: Get string from com port

Parameter AH = 04h COM service 04h
 AL = ComPort handle of com port

ES:BX = Buffer string buffer
CX = Count size of maximum characters to read

Result AX = LineState current state of com port
CX = ReadCount size of characters read from com port

INT22 service 05h: Put string to com port

Parameter AH = 05h COM service 05h
 AL = ComPort handle of com port

ES:BX = Buffer string buffer
CX = Count size of characters to write

Result AX = LineState current state of com port
CX = WriteCount size of characters written to com port

INT22 service 06h: Init com port with string configuration

Parameter AH = 00h COM service 00h
 AL = ComPort handle of com port

ES:BX = ComConfig configuration string com port

Result AX = LineState current state of com port

Environment support functions

On the A2-3 a nonvolatile memory for storage of settings, Parameters, low volume data, etc is used.
This device is a serial eeprom with a capacity of 4096 Byte and with a guaranted write cycles of one
million. The functions SetEnviron(),GetEnviron() and EnvironString() can be used to communicate
with that device. To handle that different data types these functions use a type Parameter EnvType
wich can be ENV_CLEAR (delete a entry), ENV_VALUE (integer data), ENV_STRING (string
arrays) and ENV_DATA (binary arrays). The other Parameter are the name and the data of an environ
entry. The third function is used for an easy handling of ascii strings. You should note, that while a
write operation to the device a preview entry with the same name will be overwritten. The Mon186
supports the DOS service 2Eh - Set environment and 2Fh - Get environment to read and write data to
the environ memory.

INT21 service 2Eh: Set environment data

Parameter AH = 2Eh DOS service 2Eh
 AL = EnvType type ENV_CLEAR means delete entry

 type ENV_VALUE means write integer data
 type ENV_DATA means write binary data
 type ENV_STRING means write ascii data
 DS:DX = EnvName environ entry name (max 63 chars)
 ES:BX = EnvData environ entry data (max free space of device)
 CX = Count maximum size of data

Result CF = 0 operation successful

AX = Size size of written data

18

 CF = 1 operation failed
 AX = ErrorCode

INT21 service 2Fh: Get environment data

Parameter AH = 2Fh DOS service 2Fh
 AL = EnvType type ENV_VALUE means read integer data
 type ENV_DATA means read binary data
 type ENV_STRING means read ascii data
 DS:DX = EnvName environ entry name (max 63 chars)
 ES:BX = EnvData environ entry data (max free space of device)
 CX = Count size of data

Result CF = 0 operation successful
AX = Size size of read data

 CF = 1 operation failed
 AX = ErrorCode

Time and Date support functions

On the A2-3 a real time clock and calendar device is used. The functions SetTime()and GetTime() can
be used to communicate with that device. That real time clock is a low power device with a common
CR1220 lithium backup battery with a typical life time of 2 years. The MON186 supports the DOS
service 2Ah - Set date, 2Bh - Get date, 2Ch - Set time, 2Dh - Get time to read and write data to the real
time device.

INT21 service 2Ah: Set real time clock date

Parameter AH = 2Ah DOS service 2Ah
CX = Year year (1980 .. 2079)
DH = Month month (1 .. 12)
DL = Day day (1 .. 31)

Result CF = 0 operation successful
AL = 0

 CF = 1 operation failed
AL = ErrorCode

INT21 service 2Bh: Get real time clock date

Parameter AH = 2Bh DOS service 2Bh

Result CF = 0 operation successful
AL = 0
CX = Year year (1980 .. 2079)
DH = Month month (1 .. 12)
DL = Day day (1 .. 31)
BL = Weekday day of week (0 .. 6)

 CF = 1 operation failed
AL = ErrorCode

19

INT21 service 2Ch: Set real time clock time

Parameter AH = 2Ch DOS service 2Ch

Result CF = 0 operation successful

AL = 0
DL = Msec hundreds of second (0 .. 99)
DH = Sec seconds (0 .. 59)
CL = Minutes minutes (0 .. 59)
CH = Hour hour (0 .. 23)

 CF = 1 operation failed
AL = ErrorCode

INT21 service 2Dh: Get real time clock time

Parameter AH = 2Dh DOS service 2Dh
DL = Msec hundreds of second (0 .. 99)
DH = Sec seconds (0 .. 59)
CL = Minutes minutes (0 .. 59)
CH = Hour hour (0 .. 23)

Result CF = 0 operation successful

AL = 0

 CF = 1 operation failed
AL = ErrorCode

Memory management functions

For handling with bigger memory junks in the global heap the standard functions _fmalloc(),_ffree()
and _frealloc() should be used. Those functions are implemented through the standard DOS service
memory functions listed below. The MON186 supports the DOS service 48h - Memory allocation, 49h
Free allocated memory and 4Ah – Memory reallocation for a proper memory management.

INT21 service 48h: Memory allocation

Parameter AH = 48h DOS service 48h
BX = Size block size in paragraph

Result CF = 0 operation successful
ucced

AX = Segment segment präfix

 CF = 1 operation failed
BX = Size maximum block size in paragraph
AX = ErrorCode

20

INT21 service 49h: Free allocated memory

Parameter AH = 49h DOS service 49h
ES = Segment segment präfix

Result CF = 0 operation successful
succed

 CF = 1 operation failed
 AX = ErrorCode

INT21 service 4Ah: Memory reallocation

Parameter AH = 4Ah DOS service 4Ah
ES = Segment segment präfix
BX = Size block size in paragraph

Result CF = 0 operation successful
succed

AX = Segment segment präfix

 CF = 1 operation failed
BX = Size maximum block size in paragraph
AX = ErrorCode

Process management functions

The MON186 support the DOS service 4Ch and 00h - Exit process for the realization of a process
termination.

INT20: Process termination

Parameter nothing old DOS termination service

INT21 service 00h: Process termination

Parameter AH = 00h DOS service 00h

INT21 service 4Ch: Process termination

Parameter AH = 4Ch DOS service 4Ch
AL = ReturnCode dos return value

Console character input and output functions

The higher level io functions in the standard library are putch(),getch(),printf(),scanf(),etc. . These
functions use standard dos calls to read and write to the console. By implementing those low level
console functions you are able to use standard functions for input and output purposes. The MON186
supports the DOS service 01h - Character input with echo, 02h - Character output, 06h - Character raw
input, 07h,08h - Character raw input, 09h - String output, 0Ah - String input, 0Bh - Console input state
and 0Ch - Flush buffer and console input function.

21

INT21 service 01h: Character input with echo

Parameter AH = 01h DOS service 01h

Result AL = Input input character

INT21 service 02h: Character output

Parameter AH = 02h DOS service 02h
DL = Output output character

INT21 service 06h: Character raw input

Parameter AH = 06h DOS service 06h
DL = FFh read character
DL = Output output character

Result ZF = 0 character in buffer
AL = Input input character

ZF = 1 buffer empty

INT21 service 07h: Character raw input

Parameter AH = 07h DOS service 07h

Result AL = Input input character

INT21 service 08h: Character raw input

Parameter AH = 08h DOS service 08h

Result AL = Input input character

INT21 service 09h: String output

Parameter AH = 09h DOS service 09h
DS:DX = Buffer output buffer

INT21 service 0Ah: String input

Parameter AH = 0Ah DOS service 0Ah
DS:DX = Buffer input buffer

INT21 service 0Bh: Console input state

Parameter AH = 0Bh DOS service 0Bh

Result AL = State state of input console

INT21 service 0Ch: Flush buffer and console input function

Parameter AH = 0Ch DOS service 0Ch
AL = InputFunction input function (01h,06h,07h,08h,0Ah)

22

File functions

The MON186 support the DOS service 3fh - Read from file and 40h - Write to file for a minial file
support with the file handle console and aux port.

HANDLE_STDIN Redirect to console
HANDLE_STDOUT Redirect to console
HANDLE_STDERR Redirect to console
HANDLE_AUX LED port handle

INT21 service 3Fh: Read from file

Parameter AH = 3Fh DOS service 3Fh
BX = Handle file handle
DS:DX = Buffer data buffer
CX = Count size of data

Result CF = 0 operation successful
succed

AX = Size size of read data

 CF = 1 operation failed
AX = ErrorCode

INT21 service 40h: Aux output state

Parameter AH = 40h DOS service 40h
BX = Handle file handle
DS:DX = Buffer data buffer
CX = Count size of data

Result CF = 0 operation succed
AX = Size size of read data

 CF = 1 operation failed
AX = ErrorCode

Auxiliary io functions

The MON186 supports the DOS service 03h - Aux input and 04h - Character output for that special
aux port. Those functions can be use to read or to set following values:

#define AUX_IGNITION 0x0080
#define AUX_POWER 0x0040
#define AUX_RESET 0x0020
#define AUX_SIMCHNG 0x0010
#define AUX_LINE4 0x0008
#define AUX_LINE3 0x0004
#define AUX_LINE2 0x0002
#define AUX_LINE1 0x0001

23

INT21 service 03h: Aux input state

Parameter AH = 03h DOS service 03h

Result AL = Input state of aux port

INT21 service 04h: Aux output state

Parameter AH = 03h DOS service 03h
DL = Output outport to aux port

Miscellaneous functions

At last, the MON186 supports some kind of utility functions DOS service 25h – Set an interrupt
handler, 35h - Get an interrupt handler and 30h – Get system information.

INT21 service 25h: Set interrupt handler

Parameter AH = 25h DOS service 25h
AL = Number interrupt number
DS:DX = Handler interrupt handler

INT21 service 35h: Get interrupt handler

Parameter AH = 35h DOS service 35h
AL = Number interrupt number

Result ES:BX = Handler interrupt handler

INT21 service 30h: Get system information

Parameter AH = 30h DOS service 30h

Result AL = Version dos version
AH = Revision
CX = Device device code
DX = System system version

24

4. HARDWARE SUPPORT

A1-3 hardware settings

IOB186ES 0xff00 /* AM186ES register base */
PORT_LED 0x0000
PORT_WDI 0x0100

GPIO0 DCD line DB9 /* AM186ES ioport values */
GPIO1 DTR line DB9
GPIO2 DSR line DB9
GPIO3 DCD line modem
GPIO4 DTR line modem
GPIO5 DSR line modem
GPIO10 control mux0 (TxD/RxD0)
GPIO11 _ " _
GPIO14 control mux1 (TxD/RxD1)
GPIO15 _ " _
GPIO16 /CS outport led
GPIO17 /WDI reset watchdog
GPIO18 RTS line DB9
GPIO19 CTS line DB9
GPIO20 RTS line modem
GPIO21 CTS line modem
GPIO24 Enable RS485
GPIO25 /IODIR connect modem to DB9
GPIO26 /GSMON on/off modem
GPIO30 SDA (I2C data)
GPIO31 SCL (I2C clock)

INT 08h TIMER0 /* Interrupt routing */
INT 12h TIMER1
INT 13h TIMER2
INT 14h COM1
INT 11h COM2

A2-3 hardware settings

IOB186ES 0xff00 /* AM186ES register base */
PORT_WDI 0x0100
UART_CSA 0x0500 /* UART channel A base */
UART_CSB 0x0600 /* UART channel B base */

GPIO0 DCD line DB9 /* AM186ES ioport values */
GPIO1 DTR line DB9
GPIO2 /CS uart channel a
GPIO3 /CS uart channel b
GPIO4 DSR line DB9
GPIO5 RI line DB9
GPIO10 tone signal output
GPIO11 io signal 1
GPIO12 io signal 2

25

GPIO13 io signal 3
GPIO14 io signal 4
GPIO15 flash address A20
GPIO16 flash address A20
GPIO17 /WDI reset watchdog
GPIO18 RTS line DB9
GPIO19 CTS line DB9
GPIO20 led green
GPIO21 led orange
GPIO24 Enable RS485
GPIO25 CaspOn device a2
GPIO26 SoftOn device a2
GPIO29 Update device a2
GPIO30 SDA (I2C data)
GPIO31 SCL (I2C clock)

CHA RTS .. RI DB9 signals /* UART channel A io values */

CHB RTS Reset A2 /* UART channel B io values */
CHB DTR Mute
CHB DSR SIM button
CHB CTS Reset button
CHB CD Power fail
CHB RI Ignition

INT 08h TIMER0 /* Interrupt routing */
INT 12h TIMER1
INT 13h TIMER2
INT 0Ch RTC
INT 14h COM1
INT 11h COM2
INT 0Dh COM3
INT 0Fh COM4

26

Table1: J2 bus expander for memory or other IO extensions (Hirose FX8-80S-SV)

1 GND 2 GND
3 A1 4 D0
5 A2 6 D1
7 A3 8 D2
9 A4 10 D3

11 A5 12 D4
13 A6 14 D5
15 A7 16 D6
17 A8 18 D7
19 A9 20 D8
21 A10 22 D9
23 A11 24 D10
25 A12 26 D11
27 A13 28 D12
29 A14 30 D13
31 A15 32 D14
33 A16 34 D15
35 A17 36 /RES
37 A18 38 /UCS
39 A19 40 /LCS
41 A20 42 /WLB
43 A21 44 /WHB
45 /WR 46 HOLD
47 /RD 48 HLDA
49 18.432MHz 50 NMI
51 9.216MHz 52 WDI
53 ARDY 54
55 SRDY 56
57 SDA 58
59 SCL 60
61 MIC+ 62
63 MIC- 64
65 SPK+ 66 MUTE
67 SPK- 68 IGN
69 VBB 70 DBG TxD
71 VIN3V 72 DBG RxD
73 VCC5V 74 VCC5V
75 VCC3V 76 VCC3V
77 VCC3V 78 VCC3V
79 GND 80 GND

A description of the additional circuits are found on the manufactures links:

AM186ES www.amd.com
ST16C2450 www.exar.com
PCF8593 www.philips.com
24LC32 www.microchip.com

27

5. Debug interface

For the A2-3 a development kit is available. That package includes a Visual C++ programming book
and a training course and the Paradigm DEBUG/RT debug tool. By using this package you are ready
to work with a powerful source debugging environment. In that chapter you will find the first steps to
work with that tool. For installing that package please follow the next steps:

1. Install the Paradigm Locate and DEBUG/RT on your computer. To install that package please
have a look in the documentation for that tool.

2. Install the PDREMOTE/ROM on the A2-3. The porting of that target hardware is done in the
„A2KIT186.ZIP“ on the additional floppy disk included in that development kit. Unzip that archiv
in your project tree. The file „PDREM.HEX“ should be downloaded on the A2-3 using the
following commands:

Welcome to AMD186 Monitor (? <Enter> for help)

mon186: xz ; erase all flash locations
Erasing flash sector(s) ... 8000 9000 E000
mon186:02000002E0001C ; download „PDREM.HEX“
Begin file download ... Press ESC to abort
..
Device programmed successfully
mon186: p BOOT "18432000,E000,l" ; set autostart entry
mon186: p
 BOOT=18432000,E000,l
mon186:@ ; reboot the A2-3

Finally you can reboot the A2-3 or jump the PDREMOTE/ROM with the command „G E0000“.

3. Test the communication beetween host computer and the A2-3 target with the „RTTEST“ tool.
Please choose the right com port setting depending on your system and the nominal baudrate of
57600 baud. By pressing two times the F2 key you will see following screen.

The white characters are the response from the PDREMOTE/ROM on the A2-3. With the F11 key
you can run a cyclic confidence test in order to test the communication beetween the device and
the host computer. If that test will hang or report some errors you should recompile the
PDREMOTE/ROM with a smaller baud rate setting.

28

The next final step is to start the Paradigm DEBUG/RT. The setting for the communication parameter
is defined in the „PDRT186.INI“. Relating the settings of the communication ports, tested with the test
tool before, you should change the parameter in the „PDRT186.INI“. As an example of the
configuation of the file "PDRT186.INI" see the next lines:

; This file is used by Paradigm DEBUG for initialization purposes.
; Refer to the Paradigm DEBUG manual for a complete list of commands
; that can be placed in .INI files.
;

DEVICE = COM2 ; Communications device : COMn (n=1-4) or CUSTOM
SPEED = 57600 ; COMn baud rate : 9600, 19200, 38400, 57600, or 115200
TIMEOUT = 18 ; serial timeout (in DOS ticks, 18 per second)
FLAGS = ; Default command line options

After that initial setting the DEBUG/RT will start properly and communicate with the target system.
The PDREMOTE/ROM is capable to drive DEBUG/RT interrupt controlled. Bevor you start your
debug session you should enable that in the setting „Debug controls“ and „Enable dynamic mode“. For
the first test in the „A2KIT186.ZIP“ the example project „TIME“ is included in the „SAMPLE“
folder. Based on that example you should have a good starting-point to build and test your own
applications with that A2-3 development kit.

29

6. Technical data

∗ Dimensions: 115mm x 54mm x 33mm (B x W x H)
∗ Weight: 200g
∗ Power supply: 10,8...31,2 V DC

265 mA at 12V (max.)
85 mA at 12V (idle)
0,5 mA at 12V (shutdown)

∗ Temperature limits: -25°C bis +70°C (Storage)
-20°C bis +55°C (Operating)

• Hardware settings: CpuSpeed 18.432 MHz
Memory 1Mb Flash, 256Kb RAM

 Serial Devices GSM modem A2, GPS receiver GPSMS1
IO Device PCF8593 (Real Time Clock, timer or alarm modi)

 24LC32 (32Kbit serial E2PROM)

∗ Interface A: RJ11 power supply, Cable reference

∗ Interface B: RS232 / V24 and 4 IO ports, 15 pin D-Sub

Electrical Parameter general io ports

Iout max = 200 mA VinH >= 4,5V
Vout <= 31,2V VinL <= 1,2V (or left open)

Rin = 470KΩ

Cable reference for connector 9 pin D-Sub (modem cable)

DB15 pin 4 to DB9 pin 1 DCD
pin 1 pin 2 TXD
pin 6 pin 3 RXD
pin 7 pin 4 DTR
pin 9,10 pin 5 GND
pin 3 pin 6 DSR
pin 8 pin 7 RTS
pin 2 pin 8 CTS
pin 5 pin 9 RI

30

∗ Interface C: RJ 45 8 pin shielded (Audio,RS232)

∗ Interface D: Antenna 50Ω FME female GSM, long cable

∗ Interface E: Antenna 50Ω FME female GPS, short cable (option)

Antenna description: GPS antenna with LNA (low noise amplifier)
Frequency range: 1575,42 ± 1,023 MHz
LNA gain: ≥ 25 dB
Power requirements: 5V ± 0,5V max. 50 mA

∗ SIM interface: SIM card holder for small SIM cards

∗ Digital interface: V.24 (D-Sub 9pin)

∗ Data protocol: asynchron, transparent and non transparent GSM 07.01, 07.02, 04.21
• 2400 bps V22 bis
• 2400 bps V26 ter
• 4800 bps V32
• 9600 bps V32
• 9600 bps V34
• 2400 bps V110
• 4800 bps V110
• 9600 bps V110

∗ Short Message Service: GSM 03.40, 07.05
• SMS mobile orginated
• SMS mobile terminated
• CMS
• CBS

∗ Audio interface:
• Electret microfon
• Loudspeaker 150Ω
• Ground

31

7. General hints

THIS CELLULAR MODEM COMPLIES WITH ALL APPLICABLE RF SAFETY
STANDARDS.

This cellular modem meets the standards and recommendations for the protection of public exposure
to RF electromagnetic energy established by governmental bodies and other qualified organizations,
such as the following :
Directives of the European Community, Directorate General V in Matters of Radio Frequency
Electromagnetic Energy

The GSM module FALCOM A2 is licensed with its IMEI number for working in GSM networks. It
meets the EC recommendations,

91/263/EWG CTR5 und CTR 9
ETS 300342-1

confirmed by the CE sign.

You find the actual version of this manual, of the FALCOM A2 user manual and updates at internet
homepage " www.falcom.de".

This information serves only for product specification and is in no way legally binding. Leipoldt
OHG cannot be held responsible for any damages whatsoever, except in case of gross negligence on
our part. We reserve the right to change or modify this product without notice.These operating
instructions are protected by copyright. Reproduction is unlawful.

For further information please contact:

Funkanlagen Leipoldt OHG
Gewerbering 6
98704 Langewiesen
Tel: (+49)03677/8042-0 Internet: http://www.falcom.de
Fax: (+49)03677/8042-215 Email: info@falcom.de

Funkanlagen Leipoldt OHG
Gewerbering 6
98704 Langewiesen
Germany

Tel.: (+49) 03677/ 8042-0
Fax: (+49) 03677/8042-215

Internet
DOWNLOAD: www.falcom.de
EMAIL: info @ falcom.de

Revision Date Author Comments
1.00 12.07.1999 R.Georgi Creation
1.01 31.08.1999 R.Georgi Additional hardware information
1.02 20.09.1999 R.Georgi Scematic A2-3

	Programming Manual
	List of Contents
	General Description
	Programming Guide
	System Services
	Hardware Support
	Debug Interface
	Technical Data
	General Hints

